Liquid drops

... a numerical solution for 3d printing.


Creative Commons Attribution Share Alike

Commercial use is allowed, you must attribute the creator, you may remix this work and the remixed work should be made available under this license.

Learn more or download attribution tags


Drops of liquid are described by Laplace's equation. There's only one non-dimensional parameter beta that controls the shape of any drop, beta = g rho b^2/T where g= gravity acceleration, rho=density, b=curvature and T=superficial tension.

The profile for each drop was obtained by numerically solving Laplace's differential equation[1] for the corresponding beta value and a simple GNU/Octave script for generating the final STL. beta>0 corresponds to standing drops, for beta<0 we have hanging drops and beta=0 gives a sphere. All the drops have a volume of 33510 mm^2, the same volume as the typical ping-pong ball ;) As a consequence all drops weight almost the same with 100% infill.

The STLs files are for standing drops for beta=1, 10, 100 and for hanging drops beta=-1, -0.5, -0.35

Check the pics for a clear view.

Have fun and enjoy your BIG drops!

[1] "An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid. With an explanation of the method of integration employed in constucting the tables which give the theoretical forms of such drops"
by Bashforth, Francis:

Materials and methods

No need for supports.
Print it with 100% infill.
All drops weight about 11g in PLA.



Issues are used to track todos, bugs or requests. To get started, you could create an issue.


B9b416a7a2bab0c771ae9106c2c40aa9?default=blank&size=404x4RE added this to the Things To Make collection ago
Mini white tca squaretca published this design ago